Detailed steps for training a neural editor
Kelvin Guu, Tatsunori Hashimoto, Yonatan Oren, Percy Liang
August 19, 2018

1 Introduction

• This document accompanies “Generating Sentences by Editing Prototypes”.
• It provides more detailed instructions for training a neural editor, and uses all the same notation
• Implementation available on GitHub at: https://github.com/kelvinguu/neural-editor
• Reproducible experiments available on CodaLab at: https://bit.ly/2rHsWAX
• Spot an error in this document? Please let us know at kguu@google.com

2 Training objective

• Let $\Theta = (\Theta_p, \Theta_q)$ be the full set of parameters, where:
 − Θ_p is the set of parameters for the neural editor, $p_{edit} (x | x', z)$. This includes:
 * The parameters of the sequence-to-sequence encoder and decoder
 * A set of input word vectors (used by the encoder)
 * A set of output word vectors (used by the decoder in its softmax layer)
 * (Optionally, the input and output word vectors can be tied)
 − Θ_q is the set of parameters for the inverse neural editor, $q (z | x, x')$
 * This is just a set of word vectors, as described in Section 3.4 of “Generating Sentences by Editing Prototypes”
 * (Optionally, these word vectors can be tied with the input/output word vectors of the editor)
• The overall training objective is:
 $$O(\Theta) = \sum_{x \in X} \sum_{x' \in \mathcal{N}(x)} \text{ELBO} (x, x')$$
 $$\text{ELBO} (x, x') = \mathbb{E}_{z \sim q(z|x, x')} [\log p_{edit} (x | x', z)] - \text{KL} (q (z | x, x') || p (z))$$

3 Optimization

• We will use stochastic gradient ascent to maximize the objective.
 1. Sample a sentence x uniformly from \mathcal{X}.
 2. Sample a prototype x' uniformly from $\mathcal{N}(x)$.
 − For speed, $\mathcal{N}(x)$ should be precomputed.
 3. Compute $g = (g_p, g_q)$, an unbiased estimate of $\nabla_{\Theta} \text{ELBO} (x, x')$ (see below for definitions of g_p and g_q)
(a) Sample an edit vector, \(z \sim q (z \mid x, x') \):
- Compute \(f = f(x, x') \) as described in Section 3.4 of “Generating Sentences by Editing Prototypes”.
- Define \(f_{\text{norm}} = \|f\|_2 \) and \(f_{\text{dir}} = f / f_{\text{norm}} \).
- Define \(\hat{f}_{\text{norm}} = \min (f_{\text{norm}}, 10 - \epsilon) \).
- Sample \(z_{\text{dir}} \sim \text{vMF} (f_{\text{dir}}, \kappa) \).
 * This must be done using a reparameterization trick, which introduces:
 - A set of auxiliary random variables, \(\alpha = (\omega, v) \)
 - A deterministic function \(h \), such that \(z_{\text{dir}} = h(f_{\text{dir}}, \alpha) \)
 * See the next section for details.
- Sample \(z_{\text{norm}} \sim \text{Unif} \left(\hat{f}_{\text{norm}}, \hat{f}_{\text{norm}} + \epsilon \right) \).
 * This is done using the following (very simple) reparameterization trick:
 - Sample auxiliary random variable \(o \sim \text{Unif} [0, \epsilon] \)
 - Define \(z_{\text{norm}} = \hat{f}_{\text{norm}} + o \)
- Define \(z = z_{\text{dir}} \cdot z_{\text{norm}} \)

(b) Compute \(g_p = \nabla_{\Theta_p} \log p_{\text{edit}} (x \mid x', z) \)
- \(g_p \) is computed using standard backpropagation through the editor, treating \(x, x' \) and \(z \) as constants.

(c) Compute \(g_q = \nabla_{\Theta_q} \log p_{\text{edit}} (x \mid x', z) \)
- \(g_q \) is computed using standard backpropagation through the editor \textit{as well as} through \(z_{\text{norm}} = \hat{f}_{\text{norm}} + o \) and \(z_{\text{dir}} = h(f_{\text{dir}}, \alpha) \), treating \(x, x', o \) and \(\alpha \) as constants.
- Note that \(z_{\text{norm}} \) and \(z_{\text{dir}} \) are \textit{not} treated as constants, but instead as functions that we backpropagate through. See the next section for the functional form of \(h \).

(d) Define \(g = (g_p, g_q) \)

4. Update parameters
- \(\Theta \leftarrow \Theta + \lambda g \) where \(\lambda \) is some learning rate.
- Alternatively, this step could be replaced by a more sophisticated learning rule such as Adam, RMSprop, etc.

4 Sampling from a von-Mises Fisher distribution

- We would like to sample a vector \(z_{\text{dir}} \in \mathbb{R}^p \) from \(\text{vMF} (\mu, \kappa) \), a von-Mises Fisher distribution with direction \(\mu \in \mathbb{S}^{p-1} \) (a point on the unit sphere in \(p \)-dimensional space) and concentration \(\kappa \in \mathbb{R} \) (must be \(\geq 0 \)).
- We will introduce a set of auxiliary random variables, \(\alpha = (\omega, v) \)
 - \(\omega \) is a random scalar, with distribution \(p(\omega) \) defined as:

 \[
 p(\omega) = \begin{cases}
 C \cdot e^{\kappa \omega} (1 - \omega^2)^{(p-3)/2} & \omega \in [-1, 1] \\
 0 & \text{otherwise}
 \end{cases}
 \]

 * \(C = \left(\frac{\xi}{2} \right)^{p/2-1} \left\{ \Gamma \left(\frac{p-1}{2} \right) \Gamma \left(\frac{1}{2} \right) I_{(p-1)/2} (\kappa) \right\}^{-1} \) is a normalization constant.
 * \(\Gamma \) is the gamma function.
 * \(I_n (\kappa) \) is the modified Bessel function of the first kind.
 * No exact method for sampling from \(p(\omega) \) is currently known. See the next section for a rejection sampling strategy for sampling from \(p(\omega) \).
- v is a random vector in \mathbb{R}^{p-1} with distribution $p(v)$ defined to be the uniform distribution on the $(p-2)$ sphere, $S^{p-2} = \{ x \in \mathbb{R}^{p-1} : d(x,0) = 1 \}$.
 * This can be sampled by simply drawing a multivariate normal random vector and normalizing it to length 1, but there are other more efficient approaches.

- Define $p(\alpha) = p(\omega) p(v)$ (implying that ω and v are independent)

- We can now sample $z_{\text{dir}} \sim vMF(\mu, \kappa)$ as follows:
 1. Sample $\omega \sim p(\omega)$
 2. Sample $v \sim p(v)$
 3. Define $s = (\omega; v^\top \cdot \sqrt{1-\omega^2})^\top$
 4. Construct a Householder reflection matrix, R
 - Let $e_1 = [1 \ 0 \ 0 \ ...]$
 - Define $r = (e_1 - \mu) / ||e_1 - \mu||$
 - Let $R = I - 2rr^\top$, where I is the identity matrix
 - Define $z_{\text{dir}} = Rs$
 * R essentially reflects s across the hyperplane that lies between μ and e_1

- For the sake of clarity, we can also write these steps in a form that more clearly illustrates how z_{dir} is a function of μ and α:
 $\alpha \sim p(\alpha)$
 $z_{\text{dir}} = h(\mu, \alpha) = (I - 2[(e_1 - \mu) / ||e_1 - \mu||] [(e_1 - \mu) / ||e_1 - \mu||])^\top (\omega; v^\top \cdot \sqrt{1-\omega^2})^\top$

5 Sampling $p(\omega)$ using rejection sampling

- To draw a sample ω from $p(\omega)$, we will utilize the following rejection sampling algorithm:
 1. Define $a = \frac{(p-1)+2\kappa+\sqrt{4\kappa^2+(p-1)^2}}{4}$
 2. Define $b = \frac{-2\kappa+\sqrt{4\kappa^2+(p-1)^2}}{p-1}$
 3. Define $d = \frac{4ab}{1+b} - (p-1)\ln(p-1)$
 4. Repeat until acceptance criterion is satisfied
 (a) Sample $\beta \sim \text{Beta}\left(\frac{p-1}{2}, \frac{p-1}{2}\right)$
 (b) Propose $\omega = \frac{1-1+b}{1-(1-b)\beta}$
 (c) Define $t = \frac{2ab}{1-(1-b)\beta}$, and sample $u \sim \text{Unif}[0,1]$
 (d) If $(p-1)\ln(t) - t + d \geq \ln(u)$, accept. Otherwise, start over.

- Note:
 - This rejection sampling algorithm comes from Davidson 2018.
 - Davidson 2018 uses the algorithm of Ulrich 1984, but corrects two typos that existed in the original algorithm (Algorithm VM):
 * The proposal for ω was incorrectly defined to be $\omega = \frac{1-1+b}{1+(1-b)\beta}$
 * t was incorrectly defined to be $t = \frac{2ab}{1+(1-b)\beta}$
 - For an alternative method of sampling ω, see Wood 1994.
6 References

- Hyperspherical Variational Auto-encoders (Davidson et al 2018)
 - Uses Ulrich’s approach, but corrects two typos.

- Directional Statistics (Mardia and Jupp 1999)
 - page 172, Section 9.3.2, “Simulation”
 - Does not give the algorithm for sampling ω
 - Method of combining v and ω appears to be wrong: in particular, v is the wrong dimension (p rather than $p - 1$), and v and ω are combined incorrectly (addition rather than concatenation)

- Math Stack Exchange
 - Claims to be the Ulrich-Wood algorithm, but the implementation is incorrect: appears to make the same mistake made in “Directional Statistics” (Mardia and Jupp 1999)

- Simulation of the von Mises Fisher distribution (Wood 1994)
 - Behind a paywall
 - Points out that there are errors in the original Ulrich 1984 paper
 - Proposes a different rejection sampling scheme

- Ulrich 1984
 - The original paper on sampling from a von Mises Fisher distribution
 - Contains two typos in the sampling algorithm